\qquad

Unit 2 (Chapter 5): POLYNOMIALS AND POLYNOMLAL FUNCTIONS
 I am not perfect; the syllabus can be modified at any time. Live in fear...

DAY	Aim\#	SECTION	TOPIC	PAGE	PROBLEMS
Wed. 9/13	5	4.6	Perform Operations with Complex Numbers	p. 279	$\begin{aligned} & \# 1,2,7,11,17,19,25,31,33 \\ & 35,37,43,49,51,55,65-67 \end{aligned}$
Thurs. 9/14	6	4.8	Use the Quadratic Formula and the Discriminant	p. 296	$\begin{aligned} & \# 17,20,31,33,35,36,44 \\ & 47,52-54,57,62,68,70 \end{aligned}$
$\begin{aligned} & \text { Fri. } \\ & 9 / 15 \end{aligned}$	7	5.1	Use Properties of Exponents	p. 333	$\begin{aligned} & \text { 3-13 ODD, 25-35 odd, } 36, \\ & 43-45,55,56 \end{aligned}$
Mon. 9/18	8	5.2	Evaluate and Graph Polynomial Functions	p. 341	$\begin{aligned} & 1-8,9-, 15,19,24-27, \\ & 29-35 \mathrm{ODD}, 38,41,43,46, \\ & 48,50 \end{aligned}$
Tues. $9 / 19$	9	$5 \cdot 3$	Add, Subtract, and Multiply Polynomials	p. 349	3-47 E.O.O.
Wed. $9 / 20$	10	5.4	Factor and Solve Polynomial Equations	p. 356	$\begin{aligned} & 1,3-9,14,15,19,23,27,29 \\ & 31,35,39,43,49 \end{aligned}$
Thurs. 9/21		Review/ Practice	4.6, 4.8, 5.1-5.4		-Study for QUIZ
Fri. 9/22			4.6, 4.8, 5.1-5.4 Quiz A		
Mon. 9/25	11	5.5	Apply the Remainder and Factor Theorem	p. 366	$\begin{aligned} & \text { 2, 3-19 E.O.O. , 21-33 } \\ & \text { E.O.O, } 35 \end{aligned}$
Tues. $9 / 26$	12	5.6	Find Rational Zeros	p. 374	3-35 E.O.O., 41-43
Wed. $9 / 27$	13	5.7	Apply the Fundamental Theorem of Algebra	p. 383	3-31 E.O.O., 35-49 E.O.O.
Thurs. 9/28	14	5.8	Analyze Graphs of Polynomial Functions	p. 390	3-27 E.O.O. 30
Fri. $9 / 29$	15	5.9	Write Polynomial Functions and Models	p. 397	3-9 ODD, 19, 21, 25, 27
Mon. $10 / 2$		Review/ Practice	5.5-5.9		-Study for QUIZ
Tues. $10 / 3$			5.5-5.9 Quiz B		
Wed. $10 / 4$		Review	Unit 2 Review	p. 402	$1-41 \text { ODD }$ -Study for TEST
Thurs. $10 / 5$		Review	\Leftrightarrow Unit 2 TEST		

Unit 2: Polynomials \& Polynomial Functions	Section	Rate Post
I can solve a quadratic equation using complex numbers.	4.6	
I can add, subtract, multiply, and divide complex numbers.	4.6	
I can plot complex numbers in a coordinate plane.	4.6	
I can solve quadratic equations using the quadratic formula.	4.8	
I can find the discriminant of a quadratic equation and identify the number and type of solutions.	4.8	
I can evaluate numerical expressions involving powers	5.1	
I can simply expressions involving powers using the properties of exponent	5.1	
I can identify and evaluate polynomial functions.	5.2	
I can use direct and synthetic substitution to evaluate polynomial functions.	5.2	
I can identify the end behavior and graph a polynomial function.	5.2	
I can add, subtract, and multiply polynomials	5.3	
I can completely factor a polynomial function using sum/difference of two cubes, difference of two squares, grouping, and/or trinomials methods.	5.4	
I can find all real number solutions to polynomials functions after factoring.	5.4	
I can divide polynomials using long division and/or synthetic division.	5.5	
I can use the Factor Theorem and Remainder Theorem to solve polynomial functions.	5.5	
I can use the Rational Zero Theorem to find all real zeros of a polynomial function.	5.6	
I can use the Fundamental Theorem of Algebra to find the number of solutio to a polynomial function.	5.7	
I can use the Fundamental Theorem of Algebra to find all zeros of a polynom function.	5.7	
I can use the Conjugates Theorem to write the equation of a polynomial func given the zeros.	5.7	
I can use x -intercepts to graph a polynomial function.	5.8	
I can identify turning points of a polynomial functions to help graph the function.	5.8	
I can write the equation of a higher-degree polynomial function given points that lie on the function	5.9	
I can use the Properties of Finite Differences to write the equation of a higher-degree polynomial function.	5.9	
I can use a graphing calculator to find a polynomial function that fits given d points.	5.9	

